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ABSTRACT

Motivation: Analyses and algorithmic predictions based on high-
throughput data are essential for the success of systems biology in
academic and industrial settings. Organizations, such as companies
and academic consortia, conduct large multi-year scientific studies
that entail the collection and analysis of thousands of individual
experiments, often over many physical sites and with internal and
outsourced components. To extract maximum value, the interested
parties need to verify the accuracy and reproducibility of data
and methods before the initiation of such large multi-year studies.
However, systematic and well-established verification procedures do
not exist for automated collection and analysis workflows in systems
biology which could lead to inaccurate conclusions.

Results: We present here, a review of the current state of systems
biology verification and a detailed methodology to address its
shortcomings. This methodology named ‘Industrial Methodology
for Process Verification in Research’ or IMPROVER, consists on
evaluating a research program by dividing a workflow into smaller
building blocks that are individually verified. The verification of
each building block can be done internally by members of the
research program or externally by ‘crowd-sourcing’ to an interested
community. www.sbvimprover.com

Implementation: This methodology could become the preferred
choice to verify systems biology research workflows that are
becoming increasingly complex and sophisticated in industrial and
academic settings.
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1 BACKGROUND AND PHILOSOPHY OF
SYSTEMS BIOLOGY VERIFICATION

1.1 What is verification?

In the past two decades molecular biology has experienced an
increase in the amount and diversity of data that are produced to
answer key scientific questions. Systems biology has emerged as a
new paradigm for the integration of experimental and computational
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efforts. This uses algorithmic analyses to interpret the data and
mathematical models are built to predict yet unmeasured states of the
biological system. However, algorithms and models are not unique
and the determination of the right algorithm and model leading to the
true interpretation of the natural phenomena under study becomes a
fundamental question that falls within the realm of the philosophy
of science.

Popper postulated (Popper, 1959) that a hypothesis, proposition,
theory or in the case of systems biology a model, is ‘scientific’
only if it is falsifiable. In Popper’s thesis, a theory can be proven
wrong by producing evidence that is inconsistent with the theory. In
contrast, a theory cannot be proven correct by evidence because
other evidence, yet to be discovered, may exist that will falsify
the theory. Conversely, according to the verificationist school, a
scientific statement is significant only if it is a statement of logic
(such as a mathematical statement deduced from axioms) or if the
statement can be verified by experience (Ayer, 1936). Statements
that do not meet these criteria of being either analytic or empirically
verifiable are judged to be non-sensical.

The McGraw-Hill Concise Dictionary of Modern Medicine©
(2002) defines verification as: ‘The process of evaluating a system,
component or other product at the end of its development cycle
to determine whether it meets projected performance goals’
(http://medical-dictionary.thefreedictionary.com/verification). For
systems biology, a fundamental question to address is how to
verify the correctness of a model that integrates vast amounts
of data into a representation of reality. These data are not only
high-dimensional but noisy given the biological variability, sample
preparation inconsistencies and measurement noise inherent to
the sensor instrumentation. While the concept of verification
may be applied to different contexts with slightly different
meanings, here we always use verification as checking for the
truth or correctness of either data (i.e. whether the data represents
what we wish to measure) or the correctness of a theory’s
predictions.

1.2 Crisis in peer-review/slow and low throughput

The quality of a scientific prediction or the accuracy of a scientific
model is the subject of rigorous scrutiny, usually by the researchers
themselves or by colleagues in the peer-review process that is at the
heart of scientific publishing (Spier, 2002). As stated by the editors
of the journal Science (Alberts et al., 2008),
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peer review is under increasing stress [...] The growth of scientific
publishing is placing a burden on the entire scientific enterprise.
Papers today are more interdisciplinary, use more techniques,
and have more authors. Many have large volumes of data and
supplementary material.

The coming of age of systems biology and its computational methods
such as data-interpreting algorithms are challenging the peer-review
process as large numbers of simultaneous predictions are generated,
but only a small minority is tested. In the best cases, a very small
sampling of predictions are verified using sound experimental assays
and methods and then are presented as representative confirmation
of the soundness of the entire set of predictions. Typically, this
verification method lacks sufficient rigor, objectivity and a clear
characterization of the relative strengths and weaknesses of the
algorithms (Dougherty, 2010; Jelizarow et al., 2010; Mehta et al.,
2004).

The same lack of rigor in verification of model predictions
can be found in many areas of science where complex systems
are measured, analyzed and modeled. For example, in systems
biology, high-throughput data are collected and analyzed together
with insufficient verification. Specifically, false positive and, equally
important, false negative rates, are rarely considered a requisite
for verification of the analysis for publication. Consider that
the first experimentally-generated, genome-wide interactomes in
yeast (Gavin et al., 2006; Ito et al., 2001; Uetz and Hughes,
2000) showed minimal overlap, generating some concerns within
the scientific community that the data and methodologies were
unreliable. Later work showed that high quality interactome maps
could be generated by including controls and quality standards
in data collection, careful verification of all interacting pairs
and validation tests using independent, orthogonal assays (Dreze
et al., 2010). Similarly, Genome-Wide Association Studies (GWAS)
generate a high rate of false positives as correlations are found
for single nucleotide polymorphisms with no direct effect on the
phenotype. The community responded by defining a quality-control
process and software package for analysis (Purcell er al., 2007).
Similar problems are found in other fields including protein structure
prediction (Moult et al., 1995), prediction of docking between
proteins (Wodak and Mendez, 2004), text mining from scientific
literature (Hirschman et al., 2005) and biological network inference
(Stolovitzky et al., 2007). In these cases the response has been to
set up community-based efforts, as discussed below.

1.3 Proposed community approaches for science
verification

The difficulties in verifying complex science with traditional
methods is driving changes in the methods of evaluation.
Advances in web technology (called web 2.0) have allowed
communities to stay tightly in touch to develop their interests,
even when they are geographically dispersed. The journal Nature
developed in 2006 an experiment allowing an online public
review of manuscripts that in parallel were undergoing peer-review
(http://www.nature.com/nature/peerreview/). Faculty of 1000 is an
annotation service that allows researchers to locate outstanding or
influential papers from the whole body available that can completely
overwhelm the individual. Faculty of 1000 has domain experts cull,
rate and summarize both the importance of the paper’s findings
and context within the field and hence is a good example of new

practices in research evaluation that go far beyond simple indexing
and content annotation (as in PubMed, for example). The journal
PLoS ONE and now even mainstream sites like Twitter have become
places where manuscripts are publicly criticized (Mandavilli, 2011).
We think that these changes in research evaluation, while valuable,
will not have sufficient rigor and consistency for the needs of
research workflows verification.

2 COMMUNITY APPROACHES FOR SCIENCE
VERIFICATION

2.1 Community consensus as criteria of science
done right

A natural evolution of allowing community feedback has been
the development of crowd-sourcing, a modality of distributed
problem-solving. Challenges are broadcasted to potential interested
stakeholders (solvers) in the form of an open call for participation.
Participants submit solutions for the challenges, and the best
solutions are typically chosen by the crowd-sourcer (the entity
that broadcasted the challenge). The top performing participants
are sometimes rewarded either with monetary awards, prizes,
certificates or with recognition. We think that such directed
community approaches could complement and enhance the peer-
review process. Most importantly, we think that these could serve
as a tool to verify the scientific results and fulfill the ultimate goal of
scientific research that is to advance our understanding of the natural
world (Meyer et al., 2011).

Community-based approaches to verify scientific research can be
considered a more focused attempt to tap the consensus building
that historically occurs in scientific progress. Kuhn understood
progress in science as an eminently social process, in which the
scientific worldview is dominated by the paradigm embraced by
the scientific community at any given time (Kuhn, 1962). When
the number of anomalies accumulated under the current paradigm
generates distrust, the community may adopt a new paradigm that
now guides how research is conducted. In this view, the scientific
community, and not just nature itself, needs to be taken into account
when considering what is accepted as ‘verified science’. For our
purposes, we abbreviate the typical definition of verification given
in the first paragraph to: ‘science done right’, where the ‘right’ refers
to the accepted best practices of the scientific community or similar
criteria. Accepted best practices means that there is a consensus in
the community as to the proper collection and analysis of a data
modality. Obviously, a modality must already be accessible to a
wide community for the consensus to form. For newly developed
modalities, crowd-sourcing provides a means to a rapid consensus
as to the best collection and analysis methodologies.

2.2 Summary of community approaches for
verification in other fields

Recent practices involving a new form of research quality control
have become well-established during the last decade and a half.
These efforts have merged the need of scientific verification
of methods used in research, with the widespread practice of
crowd-sourcing, to create a sort of collaboration-by-competition
communities. The practice of this idea has been sufficiently well-
established to become the business model of for-profit companies.
In this section, we summarize three relevant community-based
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Table 1. Additional information for the eight community-based efforts described in the paper. The last row describes other efforts not discussed in the main

text

Name Domain and Regularity Website

KDD Cup Knowledge discovery and machine learning in various domains. http://www.sigkdd.org
Knowledge Discovery and Data Mining. Every year since launch in 1997.

InnoCentive The name mixes Innovation and Incentive. http://www.innocentive.com/

Netflix Prize

CASP

Crowd-sourcing for problems of commercial interest.

Founded in 2001. New challenges are released on a rolling schedule.
The name comes from the sponsoring company, Netflix.

Prediction of user ratings for films, based on previous ratings.

Only challenge so far, released in 2006, lasted 3 years to complete.
Critical Assessment of Techniques for Protein Structure Prediction.

http://www.netflixprize.com//index

http://predictioncenter.org/

Protein 3D structure prediction assessment.
Every 2 years since 1994.

CAPRI Critical Assessment of PRedicted Interactions. Assessment of predictions of

http://www.ebi.ac.uk/msd-srv/capri

protein—protein docking or protein-DNA interaction from 3D structure.
Goes by Round 22 since 2001. Starts whenever an experimentalist offers an adequate target.

Predicted structures are submitted 6-8 weeks later.
DREAM
Assessment of quantitative modeling in systems biology.
Every year since 2006.
BioCreAtlve

Every 2 years beginning in 2004.
FlowCAP

Evaluation of automated analysis of flow cytometry data.

Only one iteration on 2010, second one on planning phase.

Dialogue for Reverse Engineering Assessments and Methods.

Assessment of Information Extraction Systems in Biology. Evaluating text mining
and information extraction systems applied to the biological literature.

Flow Cytometry Critical Assessment of Population Id Methods.

http://www.the-dream-project.org/
http://www.biocreative.org
http://biocreative.sourceforge.net

http://flowcap.flowsite.org/
http://groups.google.com/group/flowcap

Others efforts TunedIT: http://tunedit.org/, RGASP-RNAseq Genome Annotation Assessment Project: www.sanger.ac.uk/PostGenomics/encode/RGASP.html Pittsburgh brain
competition: http://pbc.Irdc.pitt.edu/ CAMDA Critical Assessment of Microarray Data Analysis: http://camda.bioinfo.cipf.es/camda2011/ Genome Access Workshop evaluation

of statistical genetics approaches: http://www.gaworkshop.

verification approaches with overlapping objectives but different
focus areas. Some relevant details of these efforts are listed in
Table 1.

* Knowledge Discovery and Data Mining Cup (KDD Cup)
is an annual competition organized by the Association
for Computing Machinery (ACM) Special Interest Group
on Knowledge Discovery and Data Mining, the leading
professional organization of data miners (Fayyad, 1996).
KDD goals are to achieve a better understanding and analysis
of data in many knowledge domains, such as medical
informatics, consumer recommendations, diagnostics from
imaging data and Internet user search query categorization.

InnoCentive, a spin-off of Eli Lilly, was founded in 2001 to
match problems in need of solutions with problem solvers.
The main entry point of InnoCentive is a web portal where
solutions to scientific and business problems are solicited
on behalf of organizations seeking innovations. An example
of a recent challenge is ‘Solutions to Respond to Oil Spill
in the Gulf of Mexico’. InnoCentive works with seekers to
design the challenge, score/judge solutions and manage the
intellectual property transfer. There is usually a cash award to
the winning solver.

Netflix Prize was a competition to produce a better algorithm
to substantially improve the accuracy of predictions about how
much a customer is going to enjoy a movie based on their

past movie preferences. The results were measured against
the predictions proposed by Cinematch, the algorithm then
used by Netflix for customer preference prediction. In 2009,
the $1M Grand Prize was awarded, and the description of the
best performing algorithm (if not the source code) was made
publicly available.

2.3 Summary of community approaches for
verification in the bio-sciences

In this section, we summarize five different verification approaches
in the bio-sciences, with overlapping objectives but different
scientific focus. A summary of these efforts is listed in Table 1.

¢ CASP (Critical Assessment of protein Structure Prediction) is
used to objectively test structure prediction methods against
experimentally found structures in a worldwide-community
context (Moult et al., 1995; Moult, 1996; Shortle, 1995). Even
though the primary goal of CASP is to advance the methods of
predicting protein 3D structure from its amino acid sequence,
the pioneering efforts started by CASP have inspired other
similar collaboration-by-competition challenges, such as
those listed below.

¢ CAPRI (Critical Assessment of PRediction of Interactions)
is a community-wide experiment designed on the model of
CASP (Wodak and Mendez, 2004). Both CASP and CAPRI
are blind prediction experiments that rely on the willingness
of structural biologists to provide unpublished experimental
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structures as targets. CAPRI is a blind test of the ability of
protein—protein docking algorithms to predict the mode of
association of two proteins based on their 3D structure.

* DREAM (the Dialogue for Reverse Engineering Assessment
and Methods) is a community-based effort whose goal is
to help improve the state of the art in the experimental
design, application and assessment of systems biology
models. DREAM organizers do this through annual reverse-
engineering and modeling challenges and conferences (Prill
et al., 2010; Stolovitzky et al., 2007; Stolovitzky et al.,
2009). The challenges, based on either new or pre-existing
but obfuscated datasets, test participants in biological network
inference and model predictions. Overall, a handful of best-
performer teams are identified in each challenge, while some
teams make predictions equivalent to random. As observed in
many DREAM challenges, the aggregation of the predictions
of all the teams improves the predictive power beyond that of
any single method (G.Stolovitzky, personal communication),
providing a sort of community wisdom that truly gives
meaning to the notion of collaboration by competition.

BioCreAtlve is the Critical Assessment of Information
Extraction systems in Biology. Patterned on CASP,
BioCreAtlve is a community-wide project for assessing the
application of information retrieval, information extraction
and text mining to the biomedical literature. An example
of a BioCreAtlve task is the recognition of gene names
in sentences. Tasks are released biannually, with associated
workshops for dissemination of the methods applied to the
tasks by the participating researchers. Results and level
of participation in BioCreAtlve 1 and II are detailed in
(Hirschman et al., 2005; Morgan, Lu et al., 2008), where
the lessons learned and the remaining opportunities in this
important area of systems biology are also discussed.

* FlowCAP is a community-based effort to develop new
methods for flow cytometry applications. The motivation for
the project comes from the rapid expansion of flow cytometry
applications that have outpaced the functionality of traditional
analysis tools used to interpret flow cytometry data. Hence,
scientists are faced with the daunting prospect of manually
identifying interesting cell populations in 20 dimensional data
from a collection of millions of cells. For this reason a reliable
automated approach to flow cytometry analysis is becoming
essential. FlowCAP is a community-based project to assess
the interpreting flow cytometry data and automated ‘gating’
of single-cell multi-variate data compared with gold standards
based on manual gating.

2.4 Lessons from community approaches for
verification in the biosciences

The discussion in the previous section supports the notion
that different communities have embraced crowd-sourcing and
collaborative-competition as an aid toward science verification and
problem solving. The value of these efforts is well-demonstrated
by the level of acceptance by their respective communities. The
main goals of approaches such as CASP or DREAM are, within
their respective areas of focus, to determine the state of the art

in predictive models, to identify progress over time, to reveal
bottlenecks that stymie progress and to show where effort may best
be focused.

For all these efforts, clear ‘gold standards’ and metrics are
necessary to quantify and score the entries of the participants. Three
kinds of gold standards are commonly used. In one case, evoking the
classical machine learning paradigm, some of the data is released as
a training set whereas the remainder of the data is withheld as a gold
standard test set. The second case consists of using an established
method, a technology or a database accepted by the community as a
reference. The third case consists of combining numerous datasets,
algorithms or techniques, to get a closer estimate of the ground truth.
A complication is that gold standard datasets are typically hard to
obtain, and in many cases, are presently unobtainable in biology.
For example, in protein structure prediction or macromolecular
interactions, unpublished experimental structures can be hard to
obtain, depending on the willingness of structural biologists to
share their pre-publication data. On the other hand, the complete
connectivity of a signaling network in a cell may be unobtainable
with today’s technology. Therefore, gold standards for signaling
networks are lacking. There are solutions to this, however, such as
requesting participants to train their network models to be consistent
with measured levels of phospho-proteins provided in a training set,
while testing the resulting models on their ability to predict levels of
phospho-proteins under previously unseen perturbations provided in
the test set (Prill et al., 2011).

Establishing a performance metric for scoring a challenge is
another far-from-trivial task, which is central to challenge design.
There is no unique or perfect scoring metric. The three main steps
involved in evaluation are: (i) identification of a suitable metric
(such as the area under the ROC and root mean square between
prediction and measurement); (ii) simulation of a null distribution for
the chosen metric by evaluation of randomly sampled predictions;
and (iii) assignment of a P-value for a prediction with respect to the
null distribution for the metric.

The choice of a useful scoring metric involves complexities that
may not be as straightforward as one’s intuition might suggest.
Consider the case of CASP in which participants’ predictions are
compared with measured 3D structures. Early experience with
matching only «-carbon position rather than side chains led to
artifacts and over-fitting that were later addressed by more complex
metrics than in averaged structure similarities over multiple spatial
scales (Ben-David et al., 2009).

The invariance of the metric under different transformations of
the data is another issue to take into account when scoring. For
example, when testing a model prediction that spans a large dynamic
range (such is the case in phosphoproteomics and gene expression
measurements), a root mean square of the differences between
predicted and measured variables may depend on the scale of
interest. For example, the sum of differences squared in linear scale
could overemphasize the difference over the large scales, whereas
the sum of differences squared after log transforming the data
amplifies the differences at the smaller values of the predictions. The
results of such different measures of proximity could yield different
best performers. Thus, aggregation of metrics plays an important role
to balance the different biases imposed when choosing a metric.

Even in the simple case of binary classification, metrics such
as area under the ROC curve, may be misleading if the positive
and negative sets are very unbalanced, and it may need to be
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complemented with the area under the precision recall curve
(Davis and Goadrich, 2006; Stolovitzky et al., 2007). Other typical
performance metrics involve the correlation between the predicted
values and the gold standard values. Potential correlation methods
include rank correlation, linear correlation, correlation of the log-
values and mutual information.

Combined community predictions can yield meta-predictions that
are robust and often more accurate than any of the individual
predictions. In CASP, Meta-servers that poll the results of automatic
servers are among the best performers. Similar observations have
been made for some of the DREAM challenges (Marbach et al.,
2010; Prill et al., 2010).

Lessons from DREAM suggest that in the absence of first
principle understanding, algorithms should be simple to avoid over-
fitting to a particular dataset. In general, there is no one-size-fits-all
algorithm, as the DREAM results have shown that the best algorithm
depends on the subtleties of the data or on the system studied. For
example, gene network reconstruction algorithms that may work
very well in prokaryotes do not translate to eukaryotes, and data
based on gene deletions have to be treated differently than data
based on gene overexpression in network inference tasks.

The community-wide acceptance of these crowd-sourcing
methodologies can be thought of in the context of the discussions
between verificationists and falsificationists on when a theory is
correct or not. Instead of choosing between validation and refutation
the option is finding a practical solution that is accepted by the
community. Of course, this acceptance is not arbitrary as the
scientific community is the guardian of rigor and good science.
The community acceptance of the efforts described here gives
credibility to the use of the same techniques and challenges to check
theories, hypothesis and models. How we can use this credibility to
implement a methodology to verify systems biology results will be
discussed next.

3 PROCESS OF VERIFICATION IN INDUSTRIAL
RESEARCH

3.1 IMPROVER methodology: research workflow and
building blocks

Among the lessons that we extracted from the community
approaches described in the previous section, the notion that
challenges can be used for science verification is paramount. In this
section, we embrace that concept and present a methodology for
process verification that can be used in industrial research workflows
and other settings. We call this methodology IMPROVER, for
Industrial Methodology for Process Verification in Research.
IMPROVER evaluates the robustness of a research workflow
by dividing it into building blocks that are relatively small and
verifiable (Meyer et al., 2011). A building block is the small
functional unit of a research pipeline that has a defined input
(data, samples or materials), resulting in a defined output (data
analyses, samples, high-throughput data or materials). Functionally,
a building block is a discrete research operation at the small
end of the scale that is amenable to verification. Similar divide
and conquer approaches are employed in other fields. Typically,
however, building blocks are developed around rigidly defined
criteria in which the output is a known function of the input. In
contrast, IMPROVER building blocks need to accommodate a priori
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Fig. 1. Organization of a research workflow by decomposition into building
blocks amenable to verification. (A) Research pipelines are indicated by the
gray arrows, whereas the orange blocks are the more specific building blocks
necessary to execute the pipeline. A concatenation of research pipelines forms
a research workflow. Each of the building blocks in this diagram can be
verified by the challenges indicated by the black arrows emerging from the
orange blocks. (B) Example of a research pipeline including the challenges
discussed in Section 3. For the internal challenge example, levels of RNA
extracted from tissue or cells are measured with 2 different technologies,
one of which is used as reference. For the external challenge example, gene
expression data from patients and control subjects are used to test whether a
disease signature can be extracted and verified.

unknown input—output functions. The development of appropriate
scoring metrics is a key element to the verification methodology that
helps identify the strength or weakness of a building block when a
precise knowledge of an input—output relationship is not possible.
The verification can be done internally by members of a research
group, or externally by crowd-sourcing to an interested community.
IMPROVER s, therefore, a mix of internal/non-public as well as
external/public assessment tests or challenges.

The concepts of research workflow and building blocks are
clarified in Figure 1. The chain resulting from linking together the
building blocks is a research ‘pipeline’ (Fig. 1A). The integration
of several pipelines forms a research workflow. Note that there
is no unique way of parceling a research pipeline into modules
and building blocks. In general, however, any decomposition
will ultimately have some interdependence on natural functional
boundaries and the ability to isolate and verify the building block.
In order to be verified, a research building block has to be recast into
a challenge (similar to the challenges of the crowd-sourcing efforts
discussed in the previous section), that may be assessed internally or
broadcasted externally to stakeholders in the interested community.
In both cases, the challenge construction has critical features such
as producing the gold standard datasets that will be used as an
anchor against which to compare the predictions of a challenge
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output, and the scoring methodology to assess the performance of
the predictions.

Although IMPROVER has some commonalities with other
crowd-sourcing methods, fundamental differences exist. Here we
briefly highlight the differences between DREAM and IMPROVER.
DREAM is a forum to organize the academic systems biology
research community around challenges. These challenges are chosen
by the DREAM organizers in collaboration with the community
and are mostly structured to tackle independent problems in
systems biology, with no specific link between challenges. DREAM
challenges are widely advertised to the community, and its results
are publicly announced. Conversely, IMPROVER challenges are
designed following the interests of a research organization. These
challenges, in turn, are designed to verify building blocks that work
synergistically in a research workflow. Challenges performed to
verify these building blocks can help the organization determine
a way forward with respect to a previously laid plan: if the task
that a building block was supposed to perform at a given level of
accuracy is not verified, then the building block has to be modified.
If a building block is verified, then its outcomes can be trusted with
a higher degree of confidence. Examples of building block tasks
and possible challenges to verify them are shown in Figure 1B.
IMPROVER can pose its challenges internally, that is within the
organization, or externally, to a wide community.

3.2 Internal challenges

An organization will use internal assessment challenges to verify
in-house data generation, analysis and interpretation, either because
of proprietary concerns or because the scope does not require
a community effort. An IMPROVER challenge internal to an
organization could help researchers identify building blocks that
need either improvement or replacement with a new technology.
As it will be described for external challenges, internal assessment
challenges should be scored by an objective third party, who will
not participate in the challenge but that could be from another
group within the same company or institution. An internal challenge
could be designed to evaluate the quality of data used for an
external challenge. While data production can be ensured by
Good Laboratory Practices (OECD 1998), the robustness of the
technology used to collect the data may evolve in time, and therefore
the quality of the data collection process itself may need to be
verified (exemplified by the ‘Noise Level in Gene Expression Data’
challenge in Fig. 1B).

Consider that an organization must decide if the output data from
the Gene Titan System for gene expression profiling from Affymetrix
is of sufficient quality to consider its adoption. This technology
allows researchers to process hundreds of samples in one experiment
with minimal hands-on time, thus considerably increasing gene
expression profiling throughput. An internal challenge is then
constructed to compare the Gene Titan platform with the more
established standard using Affymetrix single cartridge technology.
A first verification challenge could consist of profiling a gold
standard mRNA references sample, containing known quantities
of spiked RNA. These reference samples, when hybridized on
both technology arrays, would allow for the comparison of the
sensitivities and error levels of both technologies. What is essential
here is that the assessment be done by an objective third party who
knows the composition of the reference sample that is unknown

to the experimenter. In general, the IMPROVER internal challenge
contribution to a research workflow will result in an understanding
of the limitations of the methodology used in a pipeline. This
understanding could be used to improve the results expected from
a building block, thus increasing the robustness and value for the
larger research pipeline.

3.3 External challenges/the first IMPROVER
challenges

An external challenge can be designed to achieve multiple goals
when aimed at verifying a building block within a pipeline.
First, a public challenge invites novel approaches to a problem,
not considered by the internal researchers. Second, a blended
prediction aggregated from the entire community of predictions is
often more accurate than any individual prediction (G.Stolovitzky,
personal communication). Third, the public discourse centered on
a challenge, including conference presentations and papers on the
best-performing methods, can rapidly build a consensus in the
community as to which approaches are the most fruitful for a given
task. Fourth, if despite wide participation, no single team manages
to achieve a good performance at solving the challenge, then the
building block can be considered as non-verified, increasing the risk
of failure of that building-block’s pipeline.

Wide participation by the community is particularly important.
While financial incentives are only one approach to increase
participation, other incentives could be just as attractive, including
the opportunity to verify the algorithm predictions against newly
collected experiments, ‘bragging rights’ for the best algorithm, the
ability to publish and to drive the field for purely academic interests.

We illustrate the concept of an IMPROVER external challenge
using as an example the search for robust signatures to perform
diagnosis of diseases based on commonly available transcriptomics
data. There are examples of gene expressions signature in use today,
such as Oncotype DX and MammaPrint, two FDA approved tests
that provide prognostic value and can guide treatment in subsets
of breast cancer patients (Paik et al., 2004; van de Vijver et al.,
2002). While diagnostic signatures exist in limited cases, the wide
availability of high-throughput transcriptomics data makes plausible
the discovery of diagnostic signatures for a multitude of diseases.
The community has recognized the need for robust genomic and
gene expression signatures as important enablers for personalized
medicine, as patients could directly benefit from treatments tailored
to the individual (Subramanian and Simon, 2010).

While there has been a clear need for diagnostic signatures, efforts
to discover such signatures in commonly available transcriptomics
data have generally fallen short of expectation. There are many
reports in the literature in which the lists of differentially
expressed genes purported to distinguish between two biological
conditions showed little overlap when the data were taken from
different cohorts or when experiments were performed in different
laboratories with different platforms (Ioannidis, 2005). Hence, the
discovered signatures do not generalize and perform poorly when
classifying datasets other than the ones used to develop the methods.
Even with good control over data collection and patient selection,
signature discovery can be inhibited by inherent variability in gene
expression. One proposed method to discover robust classifiers in
spite of inherent variability is to separate ‘driver genes’ from the
‘passenger genes’ (Lim ez al., 2009). The driver genes (sometimes
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referred to as master regulators) are upstream controllers that are
proposed to be better indicators of disease state than the downstream
regulated genes that can show more inherent variability.

The first set of IMPROVER challenges, termed the Diagnostics
Signature Challenge, addresses the problem of diagnostics from
transcriptional data in a biomedical context. (This challenge is
being organized at the time of this writing.) The need to find
biomarkers that stratify a population into segments characterized
by a given phenotype is felt not just in biomedicine but also
in other contexts such as the pharmaceutical industry, where a
similar IMPROVER challenge could be deployed. We consider four
prevalent diseases: multiple sclerosis (MS), psoriasis, lung cancer
and chronic obstructive pulmonary disease. The building block
that this challenge is designed to verify is ‘Find Gene Expression
Signature’ (Fig. 1B). In other words, what needs to be verified is the
hypothesis that transcriptomics data contains enough information for
the determination of these human disease states. In a context such
as the pharmaceutical industry, a test of validity of the notion of
transcriptomics-based signatures would be a pre-requisite to attain
the research pipeline goal of finding a product (such as a drug)
tailored for each individual (Fig. 1B).

We will now describe the operational steps for the Diagnostic
Signature Challenge taking out of the four diseases, MS as an
example. MS is an inflammatory disease, believed to be an
autoimmune disease that affects the central nervous system. The
trigger of the autoimmune process in MS is unknown, but it is
believed that MS occurs as a result of some combination of genetic,
environmental and infectious factors (Compston and Coles, 2008),
and possibly other factors such as vascular problems (Minagar
et al., 2006). The symptoms of the disease result from inflammation,
swelling and lesions on the myelin and in 85% of patients start
with a relapse-remitting stage of MS (RRMS). Finding a robust
genetic signature would be of great importance, as diagnosis by
a neurologist usually involves ruling out other nervous system
disorders with invasive and expensive tests (NINDS Multiple
Sclerosis Information Page, http://www.ninds.nih.gov/disorders/
multiple_sclerosis/multiple_sclerosis.htm) and recently drugs can
delay the progression of MS when RRMS, is diagnosed early on
(Rudick et al., 2006).

IMPROVER organizers will procure from the public literature,
a training set of gene expression data from peripheral blood
mononuclear cells (PBMCs) corresponding to MS and healthy
patients (Fig. 2). In this challenge, the test set corresponds to an
unpublished cohort of 129 samples whose labels will be hidden from
the participants. This set of samples obtained from patients that were
determined as healthy or RRMS by a physician will constitute the
gold standard. A wealth of additional useful gene expression data
is also available through databases such as the Gene Expression
Omnibus or ArrayExpress. Participants can use the training set,
open literature information and any other publicly available data.
With this data at hand, participants will generate the transcriptomics-
based molecular signature that can differentiate between healthy and
RRMS patients. Participants will be asked to submit for each sample
a confidence of the prediction to belong to the RRMS class. The
confidence of the classification should have a value between 1 and
0, 1 being the most confident and O the least confident.

After predictions from participants are collected via website
submissions, the results will be scored using metrics such as the
Area Under the Precision versus Recall (AUPR) curve. Precision

Test Set: Clinical data with Gold Standard:
Unlabeled gene gene expression and|...» Labeled gene
expression data diagnosis (labels) expression data

I

SubmissionA—gene | |
i) D-_’ signature / prediction *1} D-

L Submission B - gene | |
! »-_' signature / prediction ) D_

I

signature / prediction trusted party blind to
— = — participants’ identities
T—Website—

e 3__, Submission C — gene L L) »_ Scoring is done by a

| Training Set: Public gene expression data and prior knowledge |

Fig. 2. Schematic diagram of MS Disease signature challenge organization.
A dataset with both gene expression and corresponding clinical diagnoses
or prognosis forms the basis of the challenge. The test data contains the
gene expression data generated only and is transmitted to the participants
via a web portal. There are three participants shown, the actual challenges
could involve many more. The participants generate predictions-based gene
signatures that are submitted back via the website. A trusted party will blindly
score and rank the prediction by comparing to the gold standard dataset that
contains both the gene expression data and actual clinical outcomes.

is defined as the fraction of correct positive set predictions, and
recall is the proportion of correct positive set predictions out of all
patients in the positive set. Other metrics for binary classification
assessment will also be evaluated. Teams will be ranked according to
their overall performance based on those metrics. Figure 2 illustrates
how the MS disease signature challenge will be organized in order
to verify through the IMPROVER methodology whether a robust
MS gene signature can be found. A diagnostic signature for those
phenotypes can be accepted as existing, and the building block
‘Find a Transcriptomics-based signature for control versus RRMS’
verified, only if there is at least one participating team who classified
in the correct class a statistically significant number of subjects.
A subsequent verification of the molecular signature discovered
by the best performer could be further tested by evaluating its
performance in a similar, but biologically independent dataset.
Finally, if no team managed to distinguish the RRMS patients from
healthy donors from PBMC transcriptomics data, then we can assert
that the building block failed verification, and an alternative way of
classification should be explored.

If the building block was verified, an obvious by-product of the
challenge is the identification of the best diagnostic signature and the
corresponding discovery algorithm for each of the diseases. Other
expected advantageous outcome of the IMPROVER challenge is
that it enables a fair comparison of competing methods, as the
IMPROVER format requires blind prediction by the participants
and blind scoring of the submissions (Fig. 2). This approach will
alleviate many of the problems that produce overestimation of results
when the authors of an algorithm compare their own method with
other existing methods (Norel et al., 2011). For example, over-
fitting and information leakage between training and test datasets
are two common pitfalls that can be avoided. A final advantage
of the methodology is that it allows for an assessment of the
performance of submissions across both participants and diseases.
This will provide an unparalleled opportunity to assess whether the
diagnostic signature discovery approaches can be applied across
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different diseases. Such a controlled assessment is harder to reach
with traditional scientific approaches, as it requires a wide variety
of participants using different methodologies on the same data and
scored under the same metrics.

3.4 Gold standard and metrics of performance

A foremost concern in designing a challenge for IMPROVER is to
obtain a gold standard dataset against which a set of predictions
can be scored in order to verify a building block. While designing
a challenge to verify a building block, the possibility exists that a
gold standard cannot be defined or is considered suboptimal as an
adequate database, unpublished good quality data or an accessible
expert in the field is unavailable. In this case, the rationale behind
the challenge has to be altered and the challenge must be redesigned
before the building block can be verified. Redesigning a challenge
can be laborious as it might imply obtaining data for a new gold
standard and change assumptions that simplified the underlying
biology and favored a good challenge formulation.

A building block can be considered as verified if the predictions
made within the challenge are close enough to the known gold
standard. For each challenge, a quantitative metric of performance
must be defined. Like the gold standard, the performance metric is
central and should be an integral part of the challenge formulation.
This performance metric can also be used to assign a risk that
the verification was a fluke (e.g. computing a P-value). It is also
possible that a challenge results in lack of verification: none of the
participating teams could find an acceptable solution to the problem.

There is generally no a priori reason why one metric should be
better than the others. As a rule of thumb, aggregating the several
metrics into one overall metric may have advantages and provide
less arbitrary performance metric. In other cases, however, the nature
of the problem guides the choice of metric. For example, the large
dynamic range of gene expression data suggest a performance metric
in which the values are represented in logarithmic scale.

4 CONCLUSION AND FUTURE DIRECTIONS

The great opportunities made possible by the emergence of high-
throughput data in all realms of science and technology have
also resulted in the problem of extracting knowledge from these
massive datasets. The proliferation of algorithms to analyze this data
creates the conundrum of choosing the best algorithms among the
multiple existing ones. Crowd-sourcing efforts that take advantage
of new trends in social networking have flourished. These initiatives,
summarized in Section 2, match discipline-specific problems with
problem solvers, who are motivated by different incentives to
compete and show that their solution is the best. In this way, the
best method available to solve a given problem can be found in an
unbiased context.

Interestingly, these crowd-sourcing methodologies also have an
epistemological value, shedding light to the question of when a
theory is correct or not. Instead of tasking a researcher to self-assess
(a process suspect of biases) the truth of a model or methodology, the
alternative is finding how it fares in an unbiased and rigorous test.
The community acceptance of the efforts described in the first part
of this article gives some credibility to the use of similar approaches
to verify the sometime elusive results attained in systems biology
research.

Extrapolating the idea of using challenges for verification of
scientific results, we propose the IMPROVER methodology to
assess the performance of a research workflow in contexts such
as industrial research. A main concept in IMPROVER is the
formalization of a process to determine a go or no-go decision for
the research pipeline in an industrial context (internal and external
challenges), as well as better methods inspired by the community
participation (external challenges). If the results are positive, that is,
if the pipeline passes all the challenges and there is active community
participation, then the credibility of the data, analysis and of the
subsequent results would be enhanced in the eyes of the scientific
community and regulatory agencies.

The challenge-based approach creates a metric for comparison
between possible solutions to a challenge designed to verify a
building block. Superior performance by one methodology could
promote acceptance by the community of the best performer
methodology as a reference standard. IMPROVER could offer a
complement and enhancement to the peer-review process in which
the results of a submitted paper are measured against benchmarks
in a double-blind challenge, a process that can well be called
challenge-assisted peer-review. The IMPROVER approach could
be applied to a variety of fields where the outputs of a research
project are fed into the input of other projects, such as is the case in
industrial research and development, and where the verification of
the individual projects or building blocks is elusive, as is the case
in systems biology.
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